[image:]

11

2MARKS:

PROGRAMMING IN JAVA
II B.Sc., Information Technology
16SCCIT4
Prepared By
Ms.T.KAVITHA,
Assistant Professor in CS

UNIT –I

1. Define: Objects and Classes OBJECTS
· An object contains attributes and method.
· Attributes are the data associated with the object and methods are the function and code which operate on the data.
CLASSES
· A class is a model or pattern from which an object is created.
· In other words, a class is a special module that defines an object.
2. What are three main characteristic of OOP?
· At the heart of OOP are three main characteristic.
· These are the features from which the advantage of using OOP are born.
· Encapsulation
· Inheritance
· Polymorphism
3. Define: Encapsulation
· The concept of sealing data and methods that operate on the data into an object is known as encapsulation.
· Within a object implies that it should be self-governing,which means that the attributes contained in an object should only be modified within the object.

4. What is mean by data hiding?
· It Prevents users from seeing the internal working of an object.
· The main reason for doing this is to protect data that should not be manipulated by the user.
· This make the code more reliable and reusable. Eg:
If a part of code is called only by method of that class, it can be made a private method,that is invisible from outside the class.
5. Define: Polymorphism
· Polymorphism allows an entity to take a variety of representations.
· It refers to the ability to respond different to the same message.
· That is an operation on an object may exhibit different behaviour in different situation.
· The behaviour depends on the data types and number of parameters used in the operation.
6. Define :Operator overloading
· Operator overloading is the ability to use an operator on different arguments types.
Eg:
The operator ‘+’ is used to an either integers or floating point numbers.
7. Define: Function overloading
· Functions overloading is the ability to access different implementations of functions using the same name.
Eg:

Printdate(String Str) {	}
Printdate(int dd,int mm, int yyy) {……}
8. Drawback of OOP?
· Execution overhead once a derived class is initiated all the data and function from the base classes are carried along with it.
· Some of these, or even most of it, may not be used.
· Derived classes can be very complex because of inheritance and polymorphism.
· Abstraction may lead to performance degradation.

9. What are the three kinds of JAVA program?
· Applications
· Applets
· Servlets

10. Difference between Java and other language

	S.no
	Java
	Otherlanguage

	1.
	Java is one of the most popular and widely used programming language and platform
	
Java was basically derived C++

	2.
	A platform is an environment that help to develop and run program written in any programming languages
	C++ is a both procedure as well as object oriented programming language were as java is pure object oriented language.

	3.
	Java is fast reliable and secure. From desktop to web applications, scientific supercomputer to gaming consoles.
	Java support automatic garbage collections whereas C++ does not.

11. How to define application and applets?
· Applications are standalone program executed by avirtual machine, while applets are intended to be loaded int and interpreted by a browser such as Netscape or internet Explorer.
· Applets are more complex than applications because they interact with the current environment of the browser, while applications are more like standard programs.

12. Difference between compile and run time a java program
	S.no
	Compile
	Run

	1.

2.
	It is usually written note pad and saved with the execution java.
The name of the program should match the name of the class.
Eg: The program name would be StartProgram.java
	On compiling the program a class file is created , that is StartProgram.class.
For the purpose of executing the class file, Java provides an interpreter.

13. Difference between OOP and Procedure Oriented programming

	S.no
	Procedure Oriented Program
	OOPS

	1.
	Can be defined as program model which is derived from structure programming based upon concept f calling procedure.
	It’s can be defined as a programming model which is based up on the concept of object.

	2.
	Procedure also known as routine subroutines or functions simply consist of a series of computational steps to be carried out.
	Objects contain data in the form of attributes and code in the form of methods.

5MARKS
1. 	Characteristic of OOP?
· Encapsulation
· Inheritance
· Polymorphism

Encapsulation:
· An object encapsulation the methods and data that are contained inside it.
· The concept of sealing data and methods that operate on the data into an object is known as encapsulation.
· If the state of an object needs be able to access and change the value of an object’s attributes directly from outside.
· Only the method within the object should have access to the attributes in that object.

Inheritance:
· Inheritance is the features of OOP by which the functionality of a class, called the parent or base class can be extended by creating another class, called the child or derived class, which inherits some or all of the features of the parents class.
· Inherits is the process of creating a new class from previously defined classes.
· This is the reusability. Eg: Page.No-07 (Fig 1.2,1.3)
Polymorphism:
· Polymorphism allows an entity to take a variety of representation.
· It refers to the ability of an object to respond differently to the message.
· That is an operation on an object may exhibit different behavior depends on the data types and number of parameters.

2. Explain the Overloading
· Overloading is one kind of polymorphism.
· In the OOP, there are two types of overloading: Operator overloading and Function overloading.
Operator overloading:
Operator overloading is the ability to use an operator on different arguments types.
Eg:
The operator ‘+’ is used to an either integers or floating point numbers.

Function overloading:
Functions overloading is the ability to access different implementations of functions using the same name.
Eg:
Printdate(String Str) {	}
Printdate(int dd,int mm, int yyy) {……}

3. Benefits of OOP?
· Code reusability new object from old object, allowing for improvement and refinement of the code at each stage and also preserving parts of the code for in other program
· Code modularity Everything in OOP is an object can be interchanged or removed to meet the user needs.
· Easier maintenance Inheritance usually reduces maintenance because of the domino effect it has on derived classes when a change is made in base class.
· Design stability Once a stable base class has been developed, the new classes that are derived may have fewer less errors and bugs.
· Improved communications between developers and user Objects can be broken down into real life entities,hence it is easier it communicate ideas.

4. What are the java development kit?
· Son Microsystems	offer the JDK , which is required to write, compile and run Java program.
· Java development tools,	including	the compiler, debugger	and the java interpreter.

· Java class libraries, organized into a collection of packages.
· A number of sample program.
· Various supporting tools and components, including the source code of the classes in the libraries
· As already mentioned in the previous section to transform a program into a format that a computer can understand, a compiler is needed.
· The default java compiler provided by the JDK is called javac.

5. Java source file structure
· The source code of a java program is written in a plain text file, which is commonly referred to as java source file.
· An option package definition to specify a package name: classes and interfaces defined in the file will belong to this package. If the package name is not given the definition will belong to the default package.
· A number of class and inter face definition: technically a source file need not have any such definition but that is hardly useful. The classes and interfaces can be defined in any order.
· Java source file structure
//Filename:NewApp.java
//PART 1(OPTIONAL)
//package name
Package com.company.project.Package;
//PART2(ZERO OR MORE)
//package used import java.utill.*; import java.io*;
//PART 3:(ZERO OR MORE)

//Definition of classes and interfaces (in any oreder)
public class NewApp{} class c1 {}
interface |1{}
//….
class Cn {} interface Im {}
//end of file

10MARKS
1. Features of Java
· Java is a simple and object oriented language
· Java is based o object oriented concepts. This makes it familiar to programmers using C++ and other object oriented programming languages.
· Java gives programmers access to existing libraries of tested objects that provide functionality ranging from basic data types through i/o and networks interfaces to graphical user interfaces to graphical user interfaces toolkits.
· Java is highly secure
· Java allows programmers to development highly Reliable software applications. It provides extensive compile time	checking, followed by a second level of run time checking.
· Using java makes memory management extremely simple. In java objects are created with the operator new. There are no explicit programmer defined pointer

data types and no pointer arithmetic. At the same time garbage collection is automatic.
· Java is architecture neutral and portable
· Java supports application that are deployed in heterogeneous network environment. To accommodate diversity of operating environments, the Java compiler generates a byte code.
· Unlike a C compiler, the java compiler does not produce a native executable code for any particular machine. Instead it produces a special format called byte code which is an architecture neutral intermediate format designed to transport the code efficient to multiply hardware and software platform.
Understanding the byte code
· Since the byte code is completely platform inddepent only the interpreter and few native libraries need to be poted to get java run on a new computer or operating system.
· Java technology in java technology solves both the binary distribution problem and the version problem.
· Java shows a high performance
· Higher performance is ensured by java by adopting a scheme which the interpreter runs at all full speed without needing to check the run time environment.
· Java is interpreted, threaded and dynamic
· The java interpreter executes the java byte code directly on any machine to which the interpreter and and run time system have been ported.
· The language library provides the thread class and the run time system provides monitor and condition lock primitives.

· Java is dynamically linked
· Java does not have an explicit link phase. The java source code is divide into .java files, roughly one per each class.
· The compiler compiles these into .class files containing byte code. Each . java file generally produces exactly one
.class file.
· Other features of java
· Java has no pointer. Java programs cannot access arbitrary addresses in memory. All memory access is handled behind the scenes by the trusted run time environment.

2MARKS

UNIT-3

1. Classes
· Classes are the fundamental building blocks of any object-oriented language. SYNTAX:
Class First
{
Body of the class
}
· Every class defined in java is a child of the object class.

2. Instance variables
· Instance variables are declared and defined in almost the same way as local variables.
· Variables are considered instance variables. Instance variables just after the first of class definition.

3. Constants
· A constant variable or constant is a variable whose value never change.
· To declare a constant the keyword final is used. Example:
Final float pi=3.14

4. What is the class variables?
· Class variables are global to a class and to all instance of that class.
· Class variables are used for communication between different objects within the same class.
· The static keyword is used in the class declaration to declare a class variables. Example:
Static int sum;
Static final int maxObjects=10;

5. Methods
· The name of the method the objects type or the data type that the method returns.
· The first three constituents of the method definition are referred to as method declaration or method signature.

6. Method Overloading
· The process of having methods with the same name but with different return type is referred to as method overloading.

Syntax:
Returntype methodname(type1arg2,type2arg2,type3arg3……)
{
Body of the method
}

7. Knowing This
· By referring to the current object programmers would be able to access the instance variables of that objects.
· Java provides the keyword this to refer to the current object.
· The keyword this can be used anywhere the current object might appear. Example:
T=this.x; this.mymethod(this); Return this;

8. What are the methods of passing arguments to methods?
· There are mainly two way of passing arguments to method:
· Pass by value
· Pass by reference

9. Constructor Method
· Constructor method initialize new objects when they are created unlike regular methods constructor methods cannot be called directly.
· Memory is allocated for the new object.
· Instance variables of the objects are initialized either to their initial values or to default values.
· A constructor method is invoked.

10. Constructor
· Constructor always have the same name as the class name.
· Constructor do not have a return type.

11. Inheritance
· The process by which one class acquires the properties and functionalities of another class is called inheritance.
· The aim of inheritance is to provide the reusability of code.

12. Overriding method
· Same method but have different behavior when the method is called method overriding.
· Overriding a method involves defining a subclass that has the same signature or same method in a super class.

13. Finalizer Method
· Finalizer method are almost the opposite of constructor method. Syntax:
Finalize() Example:
Protected void finalize()throws Throwable
{
Super.finalize();
}

14. Finalizing classes
· The modifier final is added to the class definition it is added after protection modifiers such as private or public.
Public finalclass Finalclass1
{
……
}

15. Finalizing variables
· The value of a finalized variables cannot be changed.
· To declare constants in java final variables with initial values are used.

16. Finalizing Method
· Methods that cannot be overridden are known as finalized methods.
· The implementation of final methods cannot be redefined in sub-classes. Syntax:
Public class FinalMethodClass
{
Public final void One()
{
……
}
}

17. Abstract classes
· Abstract classes are classes whose sole purpose is to provide common information for sub-class.
· Abstract classes can be have no instance.

18. Abstract method
· Abstract method are method with signatures, but no implementation.
· The sub-classes of the class that contains that abstract method must provide its actual implementation.

19. Packages
· A package in java is a group of related classes, interface and sub-packages.
· Java.io package contains classes and interfaces for managing various kinds of input and output.
· It also consists of wrapper class, strings and multithreading.

20. Interface
· Interface like abstract classes and methods, provide templates of behavior that other classes are expected to implement.
· Interfaces provides far more functionality to java and to class and object design than simple abstract classes and methods.

21. Modifer
· Modifiers are keywords used to define the scope and behavior of classes, method and variables in java.
· Modifiers for controlling access to a class, method or variables, which are: Public, Protected and Private.

5 MARKS
1. Knowing This
· By referring to the current object programmers would be able to access the instance variables of that objects.
· Java provides the keyword this to refer to the current object.
· The keyword this can be used anywhere the current object might appear. Example:
T=this.x; this.mymethod(this); Return this;
Program:
Public class circleEx
{
Int x,y,radius;
Public circleEx(int x,int y,int radius)
{
This.x=x; This.y=y;

Thid.radius=radius; This.display();
}
Void display()
{
System.out.println(“value of x is” +x); System.out.println(“value of x is” +y);
System.out.println(“value of x is” +radius);
}
Public static void main(String ar[])
{
System.out.println(“use of keyword this”);
CrircleEx ob=new CircleEx(10,20,10);
}
}

2. Overriding method
· Same method but have different behavior when the method is called method overriding.
· Overriding a method involves defining a subclass that has the same signature or same method in a super class.
· When that method is called the method subclass is found and executed instead of the one in the super class.
· To replace the definition of original method completely.
· To add new functionality to the original method.
· A method definition using the keyword super. EXAMPLE:
Void mymethod(string a, string b)
{
Super.mymethod(a,b);
}
Refer program4.12 pg.no: 109 and 110.

3. Overloading method
· The process of having methods with the same name but with different return type is referred to as method overloading.
· Java differentiates overloaded methods based on the number and type of parameters and not on the return type of the method.
Syntax:
Returntype methodname(type1arg2,type2arg2,type3arg3……)
{
Body of the method
}
Program:
Class MethOverLoad
{
Public static void First()
{
System.out.println(“Without any arguments”);
}
Public static void First(int a,int b)
{
System.out.println(a+b);
}
Public static void main(String args[])
{
First();
First(10,20):
}
}

4. Abstract class
· Abstract classes are classes whose sole purpose is to provide common information for sub-class.
· Abstract classes can be have no instance.
· Abstract method are method with signatures, but no implementation.
· The sub-classes of the class that contains that abstract method must provide its actual implementation.
· Class or method is by using the keyword abstract.
· Common design and implementations are factored into shared super class. Syntax:
Public abstract class ExampleAbstractClass
{
…….
}

Program:
Abstract class CarClass
{
Int reg.no; Carclass(int r)
{
Reg no=r;
}
Class Samplecar
{
Class santro extends caeclass
{
Santro(int regno)
{
Super(reg.no);
}

5. Constructor
· Constructor always have the same name as the class name.
· Constructor do not have a return type.
· Constructor method initialize new objects when they are created unlike regular methods constructor methods cannot be called directly.
· Memory is allocated for the new object.
· Instance variables of the objects are initialized either to their initial values or to default values.
· A constructor method is invoked.

Example:
Class identity
{
String name;
Int age;

Identity (string n,int a)
{
Name=n;
Age=a;
}
}

10 MARKS

1. Pass arguments to method
· There are mainly two way of passing arguments to method:
· Pass by value
· Pass by reference
Pass by value:
· When the arguments are passed using the pass by value mechanism, Only a copy of the variables are passed which has the scope within the method which services the copy of these variables.
· The changes mode to the parameters inside the methods are not returned to the calling method.

Program:
Import java.io.*; Public class sum
{
Static int calculateTotal(int n1)
{
Int total=0;
Int marks[]=new int[3]; Try
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

For(int i=0;i<n1;i++)
{
Marks[i]=Integer.parseInt(br.readLine()); Total+=marks[i];
}
}
Catch(Exception e)
{
System.out.println(“Array out of range”);
}
Return total;
}
Public static void main(String args[]) throws IOException
{
Int n,max;
System.out.println(“Enter the number:”);
Max=CalculateTotal(3);
System.out.println(“sum of the numbers is:”+max);
}
}
Pass by reference:
· In the pass by reference mechanism, when parameters are passed to the method, the calling method returns the changed value of the variables to the called method.
· The call by reference mechanism is not used by java for passing parameters to the method. Program:
Import java.io.*; Class swapref
{
Static void swap(first ob)

{
Int temp; Temp=ob.a; Ob.a=ob.b; Ob.b=temp;
}
Public static void main(string args[])
{
First ob=new First(10,20);
System.out.println(“before SWAP”);
System.out.println(“A=”+ob.a+”B=”+ob.b);
Swap(ob);
System.out.println(“AfterSWAP”);
System.out.println(“A=”+ob.a+”B=”+ob.b);
}
}
Class First
{
Int a;
Int b;
First(int x,int y)
{ A=x; B=y;
}
}

2. Packages
· A package in java is a group of related classes, interface and sub-packages.
· Java.io package contains classes and interfaces for managing various kinds of input and output.
· It also consists of wrapper class, strings and multithreading.
· The default package java.lang which includes primary classes and interfaces essential for java language.
· They help in organizing classes into units.
· They reduce problems with conflicts in names. USING PACKAGES:
· If the class is contained within the package java.lang. the class can be unitized by just giving its reference.
System.out.println(“Learning Packages”);
USING PACKAGES AND CLASS NAMES IN FULL:
· The syntax is to use the full name of the class preceded by the package name.
Java.awt.Font f =new java.awt.Font()
IMPORT COMMAND:
· The import keyword is used. This keyword ensure that the desired package with its contents is available to the program in which it is invoked.
Example:
Import java.util.vector; Importjava.awt.*;

NAME CONFLICTS:
· An explicit reference is required when there are multiple classes with the same name from different packages.
Import java.util.*; Import java.sql.*;
· Date class is being referred to especially when the date class is referred in the program.
Date date=new Date();
· Java compiler will neither complain about a naming conflict nor refuse to compiler the program.
Java util.Date date=new java.util.Date();

CREATING PACKAGES:
· Defining the package name.
· Creating a directory structure.
· Using the command package to add the class to a package. Program:
Package SamplePackage; Import java.io.*;
Public class package class
{
Int from,to; packageClass(int f,int t)
{
From=f; To=t;
}
Public void doubling()
{
Syatem.out.println(“Value from”+from+”to”+to+”on doubling give”);
For(int i=from;i<=to;i++)
{
Int k=i<<1; System.out.println(k);
}
}
Public static void main(String args[])
{
packagesClass pkg=new packageClass(100,110); pkg.doubling();
}	}

3. Interfaces
· Abstract classes and method, provides templates of behavior that other classes are expected to implements.
· They are declared in much the same way and can be arranged in a hierarchy.

CREATING AN INTERFACES:
· The keyword interface should be used.
Public interface exampleInterface
{
…..
}
· An interface can contain methods and constants.
· Methods inside interface do not have bodies.
· An interface does not offer any implementation.
· Interface must have either public or package protection.
· Constants that are not public can be used any by classes and other interfaces in the same packages.
EXTENDING INTERFACES:
· One interface inherits from another interface that sub-interface acquires all the method
definitions and constants that its ‘super interface’ defines.
Example:
Public interface TwoWayList extends Linked List
{
Public void delete last(int num);
}

IMPLEMENTING AND USING INTERFACES:
· In order to use the functionality of an interface within a class the implements keyword is used.
· METHODS INSIDE AN INTERFACE:
· These methods can contain parameters by defining method parameters to be interface types.
· Generic parameters are created that apply to any class that might use their interfaces.

PROGRAM:
Interface sports
{
Float sportswt=5.0f; Void putwt();
}
Class test extends students
{
Float part1, part2;
Void getmarks(float m1, float m2)
{
Part1=m1; Part2=m2;
}
Public static void main(String args[])
{
Result student1=new result(); Student1.getnumber(1475); Student1.getmarks(65.2f,98.0f); Student1.display();
}
}

4. modifier
· Modifiers are keywords used to define the scope and behavior of classes, method and variables in java.
· The static modifier for creating class methods and variables.
· The abstract modifiers, for creating abstract classes and methods.
· The native modifier which is used for creating native methods.

WHY ACCESS CONTROL IS IMPORTANT:
· When a method or variable is visible to another class.
· Method of the second class can reference that method or variable.
· Encapsulation is the process of hiding the internal parts of an object implementation and allowing access to that object only through a defined interface.
THE FOUR PS OF PROTECTION:
· Java provides four levels of protection for methods and instance variables: public, private, protected and packages.
Class private class
{
Private string name=”java”;
Private int age=20; Public void show()
{
System.out.println(“Name:”+name); System.out.println(“Age:”+age);
}
· The least restrictive from of protection.

 METHODS PROTECTION AND INHERITANCE:
· The new method that overrides the original method cannot be more private that me original method.
· Methods declared public in a super must also be public in all sub-classes.
· Methods declared private are not inherited and therefore the rules does not apply.
· Methods for which the protection type has not been declared can take more private protection types in sub-classes.
CREATING ACCESSOR METHOD:
· Accessor method are used for initializing and accessing the value of instance variables.
· An accessor method makes the program more readable and under standable. Class AccessorMethosClass
{
Int side;
Public void setSidevalue(int a)

{
Side=a;
}
Public int getSideValue()
{
Return side;
}
CLASS VARIABLES AND METHODS:
· To create a class variables or method, include the word static in front of the method’s name.
· The modifier static typically comes after any protection modifiers. PROGRAM:
Import java.io.*; Public class circleclass
{
Public static float pi=3.14f; Public static float area(float)
{
Return pi*r*r;
}
Public static float parameter(float r)
{
Return 2*pi*r;
}

2 MARKS
UNIT – 5

1. Stream
· A stream is an ordered sequences of bytes that has a source or a destination.
· A stream is a logical device that represents the flow of a sequence of characters.

2. Input Stream
Programs can get inputs from a data sources by reading a sequences of character from the input stream.

3. Output Stream
Program can proceduce outputs by writing a sequences of characters on to an output stream.

4. Streams
· Streams are represented in java as classes. The java.io packages defines a collection of stream classes that support input and output.
· Streams are classified into 2, they are Character streams and Byte streams.

5. Character steams
· Reader and writer are abstract super-classes for streaming 16-bits character inputs and outputs, respectively.
· Character streams are normally divided into two types.
I. Those that only read from or on write on to streams.
II. Those that also process the data that was read/written.

6. Byte streams
· Byte streams are used in a program to read and write 8-bits bytes.
· InputStream and OutputStream are the abstract super-class of all byte streams that have a sequential nature.
· All the sub-classes of InputStream and Outputstream work only on bytes.

7. File Streams
· The file class is defined in the package java.io.
· The file class is used to store the path and name of a directory or file.
· But this class is not useful in retrieving or storing data.

8. Filter Streams
· A Filter streams filter data as it is being read from or written to the stream.
[image:]

ROGRAMMING IN JAVA
The two filter streams for reading and writing data are FilterInputStream and FilterOutputStream.

9. PushbackInputStream
· Pushback is used on input streams to allow a byte to be read from and returned to the stream.
· PushbackInputStream is also attached to another Stream.

10. RandomAccessFile
· Random access file allow us to read from or write to any location in the file.
· RandomAccessFile is not inherited from InputStream and OutputStream.
· The RandomAccessFile offers methods that allow specified mode accesses such as ‘read’ only ’read-write’ to file.

11. Serialization
· Serilization is the technique most commonly used for network applications and persistent storage of objects, in order to maintain the reference of a remote object.
· Storing the state of the object into file is often referred to as serialization.

12. Applet
· One of the main features of java is the applet.
· Applets are dynamic and interactive programs.
· Applets are usually small in size and facilitate event-driven applications that can be transported over the web.

13. Main features of applet
· It provides a GUI.
· Facilitates graphics, animation and multimedia.
· Provides a facility for frames.
· Enables a event handling.
· Avoids a risk and provides a secure two-way interaction between web pages.

14. HTML APPLET Tag
· The APPLET tag of HTML is used to start an applet either from a web browser or an applet viewer.
· The HTML tag allows a java applet to be embedded in an HTML document.
· A number of optional attributes can be used to control an applet’s appearance.
[image:]

Streams are represented in java as classes.
The java.io packages defines a collection of stream classes that support input and output.
· Streams are classified into 2, they are Character streams and Byte streams.
· The java.IO package provides two sets of class hierarchies to handle character and byte streams for reading and writing:
1. InputStream and OutputStream classes are operated on bytes for reading and writing.
2. Classes Reader and Writer are operated on characters for reading and writing. CHARACTER STREAMS:
· Reader and writer are abstract super-classes for streaming 16-bits character inputs and outputs, respectively.
· Character streams are normally divided into two types:
1. Those that only read from or on write on to streams.
2. Those that also process the data that was read/written. Refer Table 7.2 Page.no:215,216 and Figure 7.1 and 7.2 Page.No:215
BYTE STREAMS:
· Byte streams are used in a program to read and write 8-bits bytes.
· InputStream and OutputStream are the abstract super-class of all byte streams that have a sequential nature.
· All the sub-classes of InputStream and Outputstream work only on bytes. Refer Table 7.3 Page.no:218 and Figure 7.3 and 7.4 page.no:217
2. File Streams
· The file class is defined in the package java.io.
· The file class is used to store the path and name of a directory or file.
· But this class is not useful in retrieving or storing data.
· The file class has three constructors that are used to create a file object.
· They are the following: File(String pathname);
File(String dirPathname, String filename); File(File directory, String filename);
Refer Table 7.7 page.no:221
There are other methods also which are useful for handling file operations such as a renaming a the file and deleting a file and to create a directory.

4
SYNTAX:
boolean renameTo(File newdirectoryname); boolean delete();
boolean mkdir(File newdirectoryname) boolean mkdirs(File newdirectoryname)
Program:
Import java.io.*;
Class ListOfFiles
{
public static void main(String a[])
{
String name = arg[0];
File file1= new File(name); If(file1.isDirectory())
{
String arr[]=file1.list(); For(int i=0;i<arr.length;i++)
{
If(arr[i].isDireory()) System.out.println(arr[i]+”is directory”); Else
System.out.println(arr[i]+”is file”);
}
}
}
}
3. Filter Stream
· A Filter streams filter data as it is being read from or written to the stream.
· The two filter streams for reading and writing data are FilterInputStream and FilterOutputStream.
· A Filter stream is constructed on another stream. This is, every filtered stream must be attached to another stream.
[image:]

5
· This can be achieved by passing an instance of InputStream or OutputStream to a constructor.
· Filter streams provided by the java.io package are sub classes FilterInputStream and FilterOutputStream, and are listed below:
· DataInputStream and DataOutputStream
· BufferedInputStream and BufferedOutputStream
· LineNumberInputStream
· PushBackInputStream
· PrintStream DataInputStream and DataOutputStream:
· DataInoutStream and DataOutputStream is a filtered input and output streams and hence must be attached to some other input and output streams.
· DataInputStream handles reading in data as well as line of text. PushBackStream:
· Pushback is used on input streams to allow a byte to be read from and returned to the stream.
· PushbackInputStream is also attached to another Stream.
4. RandomAccessFile
· Sequential files can read/write only at the beginning/end of the file.
· Random access file allow us to read from or write to any location in the file.
· RandomAccessFile is not inherited from InputStream and OutputStream.
· The RandomAccessFile offers methods that allow specified mode accesses such as ‘read’ only ’read-write’ to file.
· RandomAccessFile class is a very useful class for file handling.
· The constructors of these classes are the following: RandomAccessFile(String filename, String mode); RandomAccessFile(File file, String mode);
Refer Program 7.4 Page.no:229 and 230.
5. Serialization
· Serialization is the technique most commonly used for network applications and persistent storage of objects, in order to maintain the reference of a remote object.
· Storing the state of the object into file is often referred to as serialization.
· Reading the object state from a stored file is referred to as Deserialization.
· The streams ObjectOutoutSream and the ObjectInputStream are used for object serialization and deserialization, respectively.
· The two method that are useful for object serialization are readObject() on ObjectInputStream and WriteObject(Object obj) on the ObjectOutputStram.
Refer Program 7.5 Page.no:231
[image:]

Public static void main(String args[])
{
try
{
ObjectSerialization obj=new ObjectSerialization(“Kumar”,”ProjectLeader”); FileOutputStream fos=new FileOutputStream(“Object.txt”); ObjectOutputStream oos=new ObjectOutputSream(fos); Oos.writeObject(Obj);
Oos.flush();
Oos.close();
FileInputStream fis=new FileInputStream(“object.txt”); ObjectInputStream ois=new ObjectInputStream(fis); ObjectSerialization obj2=new (ObjectSerialization) ois.readObject() System.out.println(“Value of the obj2:”+obj2);
}
6. HTML APPLET Tag
· The APPLET tag of HTML is used to start an applet either from a web browser or an applet viewer.
· The HTML tag allow a java applet to be embedded in an HTML document. SYNTAX for APPLET tag:
<applet
Code=”appletFile” [object=”serializedApplet”] Width=”pixels”
Height=”pixels” [codebase=”codebaseURL”] [archive=”archiveList”]
[alt=”alternateText”] [name=”appletInstanceName”] [align=”alignment”]
[image:]

[vspace=”pixels”] [hspace=”pixels”]
>
[<param name=”appletAttribute1”value=”value”>] [<param name=”appletAttribute2”value=”value”>]
………
……… [alternateHTML]
</applet>
7. Difference between Java Application and Java Applet

	JAVA APPLICATION
	JAVA APPLET

	These run on stand-alone system.
	These run in web pages.

	These run from the command line of a computer.
	These are executed using a web browser.

	These have security restrictions.
	These have security restrictions.

	These are compiled using the java command.
	These are compiled using the java command.

	Parameters to the application are given at the command prompt.
	Parameters to the applet are given in the HTML file.

	In an application, the program starts at the main() method.
	In an applet program there is no main() method.

1. Types of Streams
· A stream is an ordered sequences of bytes that has a source or a destination.
· A stream is a logical device that represents the flow of a sequence of characters.
· Streams are represented in java as classes. The java.io packages defines a collection of stream classes that support input and output.
· Streams are classified into 4, they are Character streams, Byte streams , File streams , Filter stream.
[image:]

8
CHARACTER STREAMS:
· Reader and writer are abstract super-classes for streaming 16-bits character inputs and outputs, respectively.
· Character streams are normally divided into two types:
· Those that only read from or on write on to streams.
· Those that also process the data that was read/written. Refer Table 7.2 Page.no:215,216 and Figure 7.1 and 7.2 Page.No:215
BYTE STREAMS:
· Byte streams are used in a program to read and write 8-bits bytes.
· InputStream and OutputStream are the abstract super-class of all byte streams that have a sequential nature.
· All the sub-classes of InputStream and Outputstream work only on bytes. Refer Table 7.3 Page.no:218 and Figure 7.3 and 7.4 page.no:217
FILE STREAM:
· The file class is defined in the package java.io.
· The file class is used to store the path and name of a directory or file.
· But this class is not useful in retrieving or storing data.
· The file class has three constructors that are used to create a file object.
· They are the following: File(String pathname);
File(String dirPathname, String filename); File(File directory, String filename);
Refer Table 7.7 page.no:221
There are other methods also which are useful for handling file operations such as a renaming a the file and deleting a file and to create a directory.
SYNTAX:
[image:]

FILTER STREAM:
·
boolean renameTo(File newdirectoryname);
· boolean delete();
· boolean mkdir(File newdirectoryname)
· [bookmark: _GoBack]boolean mkdirs(File newdirectoryname)

· A Filter streams filter data as it is being read from or written to the stream.
· The two filter streams for reading and writing data are FilterInputStream and FilterOutputStream.
· A Filter stream is constructed on another stream. This is, every filtered stream must be attached to another stream.
· This can be achieved by passing an instance of InputStream or OutputStream to a constructor.

9
· Filter streams provided by the java.io package are sub classes FilterInputStream and FilterOutputStream, and are listed below:
· DataInputStream and DataOutputStream
· BufferedInputStream and BufferedOutputStream
· LineNumberInputStream
· PushBackInputStream
· PrintStream

2. Applet Life-cycle
· An applet has a life cycle which describes how it starts, how it operates and how it end.
· The life-cycle consists of four methods:
· Init()
· Start()
· Stop()
· Destroy()
[image:]

INIT():-

SYNTAX:

· It is called only once when the applet is first loaded and created by the browser.
· Runs once at the time of initialization before the applet starts.
· It is called when the applet is first loaded and created by the browser.
· This method is employed to initialize variables.
· It is also used to load images and fonts.

Public void init {…..} START():-
· It runs whenever the applet becomes visible.
· This method is called each time the applet is going to be displayed on the screen.
· That is, it is called when an applet starts or restarts after being stopped.
· The start() method is called to start or restart the execution of the applet. SYNTAX:
Public void start() {……} STOP():-
· It is called when the applet becomes invisible.
· It is called when the applet leaves the web page.
· This method can also be used to stop specific features of an applet, such as animation.
· Stop() method also stop all the threads running on the applet. SYNTAX:-
Public void stop() {……}

DESTROY():-
· It is call when the applet is shutdown.
· Runs only once when the browser exits.
· The applet will be removed from the memory.
· Reclaims resources that were allotted during initialization.
· It is used for deallocating, closing and cleaning up resources.

SYNTAX:-
Public void destroy() {…..} PAINT():-
· Runs whenever the applet needs to be drawn or displayed.
· The paint() method is used for applet display on the screen.
· The paint() method is called whenever a window is required to paint or repaint the applet. SYNTAX:
Public void paint(Graphics g) {……}

3. RandomAccessFile
· Sequential files can read/write only at the beginning/end of the file.
· Random access file allow us to read from or write to any location in the file.
· RandomAccessFile is not inherited from InputStream and OutputStream.
· The RandomAccessFile offers methods that allow specified mode accesses such as ‘read’ only ’read-write’ to file.
· RandomAccessFile class is a very useful class for file handling.
· The constructors of these classes are the following: RandomAccessFile(String filename, String mode); RandomAccessFile(File file, String mode);
· RandomAccessFile objects can be created either from a string containing the file name or from a File object.
· The mode represents the type of access to the file for example ‘r’ for read and ‘rw’ for read and write.
· There are two other modes, namely, ‘rws’ and ‘rwd’.
· ‘rws’ opens the file as read and write and store the updations made on the file data or metadata in the synchronized way.
· ‘rwd’ deals with the file data but not the metadata.
· Metadata refers to the data about the files.
Refer Program 7.4 Page.no:229 and 230.

[image:]

image1.png

image2.png
MARKS

image3.png

image4.png
MARKS

image5.png
UNIT -5

image6.png
UNIT -5

image9.png
10 MARKS

image10.png
10 MARKS

image11.png
Refer Program 7.4 Page.no:229 and 230.

image12.png
Refer Program 7.4 Page.no:229 and 230.

image7.png
PROGRAMMING IN JAVA

image8.png

